Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring....
Introduction: This study evaluated the performance of automated dual-energy computed tomography (DECT)-based quantification of perfusion defects (PDs) in acute pulmonary embolism and examined its correlation with clinical parameters. Methods: We retrospectively analyzed data from 171 patients treated for moderate-to-severe acute pulmonary embolism, who underwent DECT imaging at two separate time points. PDs were quantified using a fully automated AI-based segmentation method that relied exclusively on iodine perfusion maps. This was compared with a semi-automatic clinician-guided segmentation, where radiologists manually adjusted thresholds to eliminate artifacts. Clinical variables including the Miller obstruction score, right-to-left ventricular diameter ratio, oxygen saturation, and patient-reported symptoms were also collected. Results: The semiautomatic method demonstrated stronger correlations with embolic burden (Miller score; r = 0.4, p < 0.001 at follow-up) and a negative correlation with oxygen saturation (r = −0.2, p = 0.04). In contrast, the fully automated AI-based quantification consistently produced lower PD values and demonstrated weaker associations with clinical parameters. Conclusions: Semiautomatic quantification of PDs currently provides superior accuracy and clinical relevance for evaluating lung PDs in acute pulmonary embolism. Future multimodal AI models that incorporate both anatomical and clinical data may further enhance diagnostic precision....
This study aimed to monitor the biomechanical development of an artistic swimming duet across a macrocycle through an individualised training approach. Two swimmers (17.5 ± 0.5 years), members of the Los Angeles 2028 National Olympic Project, were assessed in December 2023 (M1) and April 2024 (M2), corresponding to the beginning and the end of the macrocycle. Maximal (Fmax) and mean (Fmean) force in the prone sculling and kick pull action were measured using a 20 s tethered test. Split velocity (vSplit) was assessed in free format based on video recording. Dry-land strength included assessments of internal (IR) and external (ER) shoulder rotation strength of the dominant (D) and non-dominant (ND) limbs, and countermovement jump (CMJ) power. The standard duet choreography was analysed in competition at both time points. Percentage variation (Δ%) between swimmers was calculated for M1 vs. M2. Results showed convergence (M1 vs. M2) in Fmean of the sculling (21.6% vs. 9.9%) and kick pull (45.1% vs. 29.1%), accompanied by greater similarity in vSplit (15.9% vs. 15.5%). Further convergence was observed in IRND (33.7% vs. 13.9%), ERD (11.6% vs. 4.4%) and CMJ (7.4% vs. 3.6%). The duet’s competition score increased from 168.9943 to 190.7183 points. It can be concluded that individualised training was useful for the duet to become more homogeneous in in-water strength, inwater kinematics and dryland strength, resulting in improved competitive performance....
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in diseasemodifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a costeffective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies....
Objective: To develop and validate a ResNet-50-based deep learning model for automatic detection of osteomyelitis (DFO) in plain radiographs of patients with diabetic foot ulcers (DFUs). Research Design and Methods: This retrospective study included 168 patients with type one or type two diabetes and clinical suspicion of DFO confirmed via a surgical bone biopsy. An experienced clinician and a pretrained ResNet-50 model independently interpreted the radiographs. The model was developed using Pythonbased frameworks with ChatGPT assistance for coding. The diagnostic performance was assessed against the histopathological findings, calculating sensitivity, specificity, the positive predictive value (PPV), the negative predictive value (NPV), and the likelihood ratios. Agreement between the AI model and the clinician was evaluated using Cohen’s kappa coefficient. Results: The AI model demonstrated high sensitivity (92.8%) and PPV (0.97), but low-level specificity (4.4%). The clinician showed 90.2% sensitivity and 37.8% specificity. The Cohen’s kappa coefficient between the AI model and the clinician was −0.105 (p = 0.117), indicating weak agreement. Both the methods tended to classify many cases as DFO-positive, with 81.5% agreement in the positive cases. Conclusions: This study demonstrates the potential of IA to support the radiographic diagnosis of DFO using a ResNet-50-based deep learning model. AI-assisted radiographic interpretation could enhance early DFO detection, particularly in high-prevalence settings. However, further validation is necessary to improve its specificity and assess its utility in primary care....
Loading....